Solutions to problem sets 1 & 2

Jeff Speaks
PHIL 43916

September 22, 2014

The following is a derivation of the truth conditions of (one tree of) ‘It is not the case
that James Bond is boring or Pavarotti is cute,” using the bottom-up method.

(1)S
(2)neg (4)S
\
(3)It is not the case that
(5)S (11)conj (13)S
\
(12)or
(6N (8)VP (14‘)N (16)‘VP
\ \ .
(7)James Bond 9)Vi (15)Pavarotti (17‘)\/1
\ :
(10)is boring (18)is cute
1. [(18)]V={=:x is cute in v} lexicon
2. [(16)]*={x:x is cute in v} 1,pass-up
3. [(15)]?=Pavarotti lexicon
4. [(14)]?=Pavarotti 5,pass-up
5. [(13)]"=1 iff Pavarotti € {z:x is cute in v} 31(a),2,4

By exactly parallel reasoning we can derive:

10. [(5)]*=1 iff James Bond € {z:x is boring in v} 31(a),7,9

Next we want to derive [(4)]V. A first step is to apply our rule for sentences of type [s S
conj SJ:

1L (@)=t iff [AD]" (< [(5)]", [(A3)]" >)=1

A natural next step is to apply the lexical entry for ‘or’, plus pass-up:
12. [(4)]¥=1 iff [(5)]"=1 or [(13)]*=1 lexicon,pass-up

Now we should substitute back in the results of our previous derivations of the semantic
values of nodes (5) and (13):

13. [(4)]¥=1 iff James Bond € {:z is boring in v} or Pavarotti € 5,10,12
{z:x is cute in v}

This is a fully explicit statement of the semantic value of node (4): notice that the
statement of the conditions under which (4) is true does not mention the semantic values
of any other nodes. Now all we need to do is move from this to get the semantic value of
the root node. As above, the best method is to first state the rule by which the semantic
value of node (1) is determined, and then substitute in the results we have already derived.
Our rules tell us:

4. [=1 i ()] ([@)])=1
We then apply the lexical entry for ‘It is not the case that’, plus pass-up, to give us
15. [(1)]¥=1 iff [(4)]"=0 lexicon,pass-up
We now substitute back in our derivation of the semantic value of node (4) to give us

16. [(1)]*=1 iff James Bond ¢ {z:z is boring in v} and Pavarotti 13,15
¢ {z:x is cute in v}

And we are done.

Now let’s look at the example from problem set 2, ‘It is not the case that a cat likes every
dog.” One tree for this sentence is:

(1S

(2)neg (4)S

\
(3)It is not the case that

(7‘)a (9)‘cat % (16)S

(13)(‘3very (15)‘d0g TN

(20)likes

This derivation is much easier if we use the top-down method, and that is what I will
use below. Remember that the key here is to begin with the root node, and progressively
use the rules and the lexicon to arrive at a fully explicit statement of the sentence’s truth
conditions. We start out at the top, by applying the rule for negation:

1. [()]M9=1 iff [(2)]M9([(4)]M9=1
2. [(O]M9=1 iff [(4)]*9=0

It is now time to make explicit the semantic contribution of the quantifier phrase, ‘a cat.’
The lexical entry for ‘a’ tells us what it takes for a quantifier phrase like this to combine
with a sentence to form a truth; but the entry also tells us what it takes for the sentence
formed to have the value 0. We can use that fact to get to the following line:

3. [(1)]*9=1 iff it is not the case that for some u € U, u €
[cat]-9 and [10]*9" " =1

Now we need to make explicit the semantic contribution of ‘every dog.” That is done
in just the same way as the previous step; the only additional complication is that we
are modifying an already-modified assignment function, to give us a doubly-modified
assignment function:

4. [(1)]*9=1 iff it is not the case that for some u € U, u €

[cat]™9 and for every ux € U, if ux € [dog]™9, then

[[16HM’Q[“/91[“*/62]:1
The next step is to figure out when [[16]]M’9[u/el[u*/62]:1. This looks daunting, but really
this is just a simple sentence of the sort we have known how to handle for a while — a
sentence of the form [¢ N VP]. It’s just that instead of names we now have traces whose
semantic values are fixed by the relevant assignment function. But this really does not
make things much harder. Using our rule for sentences of this form gives us:

5. [(1)]M-9=1 iff it is not the case that for some u € U, u €
[cat]*9 and for every ux € U, if ux € [dog]™¥, then
[[elﬂM’g[“/ﬁ[“*/f’«Q] c H(lg)ﬂM’g[u/ﬁ[u*/ﬂz]

We now apply our rule for transitive verbs:

6. [(1)]M-9=1 iff it is not the case that for some u € U, u € [cat]M-9
and for every ux € U, if ux € [[dog]]M,g7 then [[elﬂM,g["/el[u*/eﬂ]
{Jf < x’[[EQH]\/Lg[u/H[U*/ezH S € IIerS]]M’g[u/el[u*/BZ]}

Now all that is left to do is figure out the semantic values of the leaves. First, the traces.

This is easy, since the semantic value of a trace under an assignment is just the value that
that assignment gives to that trace. This gives us:

7. [(1)]M-9=1 iff it is not the case that for some u € U, u € [cat]*9
and for every ux € U, if ux € [dog]*9, then u € {z :< zux > €
[[hkes]] M, glu/erlvs/e2] }

Now we just plug in what the lexicon tells us about the non-trace leaves, and we are done:

8. [(1)]™9=1 iff it is not the case that for some u € U, u € {z : z is a
cat in v} and for every ux € U, if ux € {z : z is a dog in v}, then u
€ {z:<zux> € {<y,z > ylikes z in v}}

